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Percolation-enhanced nonlinear scattering from metal-dielectric composites

Andrey K. Sarychev,* V. A. Shubin, and Vladimir M. Shalaev
Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003

~Received 22 December 1998!

It is shown that large percolation-enhanced nonlinear scattering occurs in metal-dielectric random compos-
ites near the percolation threshold. The enhancement is due to giant local electric field fluctuations that are
extremely inhomogeneous and consist of spatially separated sharp peaks, ‘‘hot’’ spots, where the local field is
greater by many orders of magnitude than the applied field.@S1063-651X~99!00106-3#

PACS number~s!: 78.20.2e, 05.70.Jk, 72.15.Gd
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The local fields can experience strong enhancement in
visible and infrared spectral ranges, for metal-dielectric co
posites comprising metal particles that are characterized
dielectric constant«m5«m8 1 i«m9 , with the negative real part
«m8 ,0, and the small imaginary part,«m9 /u«m8 u!1. In a sim-
plest case of a spherical metal particle, the local electric fi
}(2«d1«m)21, and it is strongly enhanced at the plasm
resonance, when«m8 (v)>22«d («d is the permittivity of a
dielectric substrate! @1#. In general, the local fieldE(r ) en-
hancement is due to the collective plasmon resonance
ensembles of metal particles@1–3#. Nonlinear optical pro-
cesses of thenth order are proportional toEn(r ) and, there-
fore, the enhancement can be especially large.

In this paper we consider percolation-enhanced nonlin
scattering~PENS! from a random metal-dielectric film~also
referred to as a semicontinuous metal film! at the metal fill-
ing factor p close to the percolation thresholdpc . Specifi-
cally, we study the enhanced nonlinear scattering resultin
a field oscillating at frequencynv, when a percolating metal
dielectric film is illuminated by an electromagnetic wave
frequencyv. At the percolation, an infinite metal cluste
spans over the entire sample and the metal-dielectric tra
tion occurs in a semicontinuous metal film@1#. Optical exci-
tations of the self-similar fractal clusters formed by me
particles nearpc result in giant, scale-invariant, local-fiel
fluctuations that make possible PENS. Linear Rayleigh s
tering from semicontinuous metal films has been conside
in a recent paper@4#. It was shown that while Rayleigh sca
tering is strongly enhanced, it is still only a small correcti
to the specular reflection and transmission. In contrast, be
we show that PENS with a broad angular distribution can
a leading optical process.

For simplicity, we assume that a semicontinuous film
illuminated by the light propagating normal to the film, wi
the wavelengthl larger than any intrinsic spatial scale in th
film, including the skin depth,l@a0Au«mu, wherea0 is the
grain size.~All distances hereafter are given in unitsa051.!
The gaps between metal grains are filled by the dielec
substrate so that a semicontinuous metal film can be tho
of as a two-dimensional array of metal and dielectric gra
that are randomly distributed over the plane. For an incid
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wave of frequencyv, we considernth harmonic generation
(nHG) in a percolating film. We assume that a semicontin
ous metal film is covered by a layer possessing the nonlin
conductivitys (n) that results innHG. The local electric field
Ev(r ) induced in the film by the external fieldEv

(0) generates
in the layer thenv currents (n)EvEv

n21 @5#. This nonlinear
current, in turn, interacts with the film and generates ‘‘see
nv electric field, with the amplitude E(n)

5s (n)Ev
n21Ev /s (1), wheres (1) is thelinear conductivity of

the nonlinear layer at frequencynv. The electric fieldE(n)

can be thought of as an inhomogeneous external field ex

- FIG. 1. Distribution of thex component of the ‘‘nonlinear’’
local field Re@E2(r )Ex(r )#. The applied fieldEa

(0)51, Ey
(0)50.
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7240 PRE 59BRIEF REPORTS
ing the film atnv frequency. ThenHG currentj (n) induced
in the film by the ‘‘seed’’ fieldE(n) can be found in terms o
the nonlocal conductivity tensorŜ(r ,r 8) introduced in@3#
that relates the applied~external! field at pointr 8 to the cur-
rent at pointr ,

j b
(n)~r !5E Sba

(n)~r ,r 8!Ea
(n)~r 8!dr 8, ~1!

whereSba
(n) is the conductivity tensor at frequencynv and

the integration is over the entire film area@3#. The Greek
indices take values$x,y% and summation over repeated ind
ces is implied. It is the currentj (n) that eventually generate
the nonlinear scattered field at the frequencynv.

Using the numerical technique described in detail in@3#,
we calculate the local-field spatial distribution. For examp
in Fig. 1 we show the normalized real part of the 3v local
field Re@E2(r )Ex(r )#/uE(0)u3 in a 2d silver-on-glass film at
p5pc andl51.5 mm. For the silver dielectric constant w
use the Drude formula«m(v)5«b2(vp /v)2/@11 ivt /v#,
where the interband-transition contribution«b55.0, the
plasma frequencyvp59.1 eV, and the relaxation frequenc
,

vt50.021 eV @6#. As seen in Fig. 1, the fluctuating 3v
fields form a set of sharp peaks, looking up and down, a
having the magnitudes;106. Such huge fluctuations of th
local fields are anticipated to trigger the PENS at the f
quency 3v. The larger the numbern of the harmonic, the
stronger the correspondingnv local field fluctuates. There
fore we speculate that the enhancement factor for PENS
comes progressively larger for higher harmonics.

By using the standard approach of the scattering the
adopted for semicontinuous metal films in@4# and assuming
that the incident light is unpolarized, we obtain that the
tegral scattering in all directions but the specular one, i
the diffusive scattering, is

S5~4k2/3c!E @^ j a
(n)~r1! j a

(n)* ~r2!&2u^ j (n)&u2#dr1dr2 ,

~2!

where the integration is over the entire areaA of the film,
k5v/c, and the angular brackets stand for the ensemble
erage. As in@4#, we assume that the integrand vanishes
distancesr !l, wherer5r22r1; therefore, we omit the term
;exp(ik•r ). By substituting Eq.~1! in Eq. ~2!, we obtain
on

,
be
E ^ j a
(n)~r1! j a

(n)* ~r2!&dr1dr25E ^Sgb
(n)~r1 ,r3!Sda

(n)* ~r2 ,r4!dgd$Eb
(n)~r3!Ea*

(n)~r4!%&)
i 51

4

dr i , ~3!

where $•••% denotes the averaging over the light polarizations. For the unpolarized light we have the expressidgd

52$Env,g
(0) Env,d

(0)* %/uEnv
(0)u2, whereEnv

(0) is the amplitude of the uniform ‘‘probe’’ field at the frequencynv. We substitute this
expression fordgd in Eq. ~3!, integrate over the coordinatesr1 ,r2, and average over independent polarizations of fieldsEnv

(0)

andEv
(0) . Thus we obtain

E ^ j a
(n)~r1! j a

(n)* ~r2!&dr1dr25
1

uEnv
(0)u2

E ^snv~r3!snv* ~r4!@Env~r3!•Env* ~r4!#@E(n)~r3!•E(n)* ~r4!#&dr3dr4 , ~4!

whereEnv(r ) is the localnv field excited in the film by ‘‘probe’’ fieldEnv
(0) , andsnv(r ) is the film conductivity at frequency

nv. In the macroscopically homogeneous and isotropic film considered here, the current correlator given by Eq.~4! does not
depend on the direction of the probe fieldEnv

(0) . Therefore, we can choose now the fieldEnv
(0) to be collinear with external field

Env
(0)iEv

(0) . The average nonlinear current^ j (n)& is aligned withEv
(0) and, therefore, the square of the nonlinear current can

written asu^ j (n)&u25u^Env
(0)
• j (n)&u2/uEnv

(0)u2. Using Eq.~1! for j (n), we find

u^ j (n)&u25UA21E Env,b
(0) Sba

(n)~r1 ,r2!Ea
(n)~r2!dr1dr2U2Y uEnv

(0)u2 5u^snv~Env•E(n)!&u2/uEnv
(0)u2. ~5!

By substituting Eqs.~4! and ~5! in Eq. ~2!, we obtain

S5
8pk2

3cuEnv
(0)u2Us (n)

s (1)U2

A^usEnvu2uEvu2uEvu2(n21)&E
0

`

g(n)~r !rdr , ~6!

whereg(n)(r ) is the nonlinear correlation function defined as

g(n)~r !5
^snv~r1!snv* ~r2!~Env~r1!•Env* ~r2!!~E(n)~r1!•E(n)* ~r2!!&2u^snv~E(n)

•Env!&u2

^usnvEnvu2uE(n)u2&
, ~7!
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which depends only on the distancer 5ur12r2u between
points r1 and r2 for macroscopically homogeneous and is
tropic films. We compare this PENS with thenv signal I nv

from a nonlinear layer on a dielectric film with no met
grains on it,I nv5(c«d

2/2p)Aus (n)/s (1)u2uEv
(0)u2uEv

(0)u2(n21).
By expressing the enhancement factor for PENS,G(n)

5S/I nv , in terms of the local dielectric constant«nv at the
frequencynv, we obtain

G(n)5
~ka0!4

3

^u«nvEnvu2uEvu2uEvu2(n21)&

«d
2uEnv

(0)u2uEv
(0)u2uEv

(0)u2(n21)

n2

a0
2

3E
0

`

g(n)~r !rdr . ~8!

Note that for a homogeneous (p50 and p51) surface
g(n)(r )50 and, therefore,G(n)50, so that the scattering oc
curs in the reflected direction only. Besides the small fac
(ka0)4, which is similar to that in the standard Rayleig
scattering, the enhancementG(n) for PENS is proportional to
the 2(n11) power of the local field. For highly fluctuatin
local fields, this factor can be very large~see Fig. 1!. To
understand the origin of the strong fluctuations, we cons
below the local field distribution in more detail.

Becausel@a0Au«mu, we can introduce a potentialf(r )
for the local electric field, and the field distribution proble
reduces to solving the equation representing the current
servation law,¹•„«(r )@2¹f(r )1E(0)(r )#…50. Being dis-
cretized, this relation acquires the form of Kirchhoff’s equ
tions defined on a square lattice@1#. Kirchhoff’s equations, in
turn, can be written in the matrix form, with the local diele
tric constants as the matrix elements of the Hamiltoni
which we refer to hereafter as Kirchhoff’s Hamiltonia
~KH!. The off-diagonal elements of the KH areHi j 52« i j
and the diagonal elements areHii 5( j« i j , wherej refers to
nearest neighbors ofi. The dielectric constants« i j take val-
ues«m and «d , with probabilitiespc and (12pc), respec-

FIG. 2. Correlation functiong(3)(r ) for silver on glass semicon
tinuous film at the percolation thresholdp5pc . Different curves
correspond tol150.34 mm ~solid line and circles, in the inset!,
l250.53 mm ~dashed line and triangles!, andl350.9 mm ~point-
dashed line and diamonds!; the arrows are theoretical estimates f
je(l2) and je(l3). The straight line illustrates the scaling depe
dence ofg(3)(r ) in the tail. The unitsa051 are used.
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tively. In this form, the KH is of Anderson’s type, with bot
on- and off-diagonal correlated disorder@7#. We consider
first the case when2«m8 '«d;1 and the loss factork
5«m9 /u«mu!1. Now we express the fluctuating potenti
f(r ) in terms of the eigenvaluesLn and eigenfunctionsCn
of the real partH8 of the non-Hermitian KH,H5H81 iH 9,
where H9}k is small sincek!1. Then, the problem for-
mally maps the Anderson quantum-mechanical problem,
the eigenfunctionsCn are all localized~see Fig. 1! in the
considered 2d case@7#. Then we neglect the overlapping o
the eigenstates in calculating the momentsMn
[^uE(r )/E(0)un&, assuming that̂uCnuuCmu&;dnm . Thus we
obtain Mn;*r(L)/uL1 ibkundL;k2n11 (k→0), for n
>2, wherer(L) is the density of the eigenstates of KH o
H8 and ibk is a small correction to the eigenvalueL due to
kÞ0 (b;1). The fluctuations tend to infinity@Mn

;(u«mu/«m9 )n21→`# when losses vanish in the system. F
the large contrastu«mu/«d@1 the moments become eve
larger,Mn;(u«mu/«d)(n21)/2(u«mu/«m9 )n21 @3#.

It follows from the above consideration that the eige
statesCn with Ln'0 are in resonance with external fie
and are excited indeed. Correspondingly, the local-field fl
tuations are of the resonant character, and the field corr
tion functiong(3)(r ), shown in Fig. 2 for a silver-glass sem
continuous film, drops very rapidly forr .1 and has a
negative minimum. The anticorrelation occurs because
field maxima have different signs, as seen in Fig. 1. T
power-low decrease ofg(3)(r ), which is typical for critical
phenomena, occurs in the tail only~see the inset in Fig. 2!.
The correlation functiong(3)(r ) departs from the power-law
~the straight line in Fig. 2!, for r larger thanfield correlation
length je , which was estimated in@3,4# as je;u«mu/
A«d«m9 . This estimate givesje.5, 20, and 30~in a0 units!,
for l50.34, 0.53 and 0.9mm, respectively, which is in
agreement with our numerical results~inset in Fig. 2!. The
integral ofg(3)(r ) in Eq. ~8! is about unity, for all frequen-
cies. Based on the above consideration we estimate
a0

22*0
`g(n)(r )rdr;1 for all n.

To estimate PENS given by Eq.~8! quantitatively we take
into account that the spatial scaleje(v) for the field fluctua-

FIG. 3. PENS factorG(n) for n-harmonic generation in a silve
semicontinuous film atp5pc . Numerical calculations forn52, 3,
4, and 5 are represented byd, m, j, and 1, respectively. The
solid lines describeG(n) found from Eq.~6!.
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tions at the fundamental frequencyv is significantly larger
than je(nv) at the generated frequencynv. Therefore, we
can decouple the average^u«nvEnvu2uEvu2uEvu2(n21)& in Eq. ~8!

and approximate it by ^u«nvEnvu2uEvu2uEvu2(n21)&
;^u«nvEnvu2&uEv

(0)u2nM2n . The second moment of th
current ^u«nvEnvu2& we estimated as ^u«nvEnvu2&
;uEnv

(0)u2u«m(nv)u5/2«d
1/2/«m9 (nv) according to@4#. Then Eq.

~8! takes the form

G(n)

~ka0!4
;Cn2

u«m~nv!u5/2u«m~v!u3(2n21)/2

«d
n11«m9 ~nv!«m9 ~v!2n21

, ~9!

whereC is an adjustable prefactor. For the Drude metal a
v, nv!vp , we can simplify Eq.~9! as

G(n);C~ka0!4
1

«d
n11 S vp

vt
D 2nS vp

v D 2

, ~10!

i.e., PENS increases with increasing the order of a nonlin
process and decreases toward the infrared part of the s
trum asG(n)}l22, in contrast to the well-known lawl24

for Rayleigh scattering. It is interesting to note that PENS
la
d

ar
ec-

s

inversely proportional to the wavelength squared for hig
harmonic scattering, independently of the order of opti
nonlinearity.

In Fig. 3 we compare the numerical results for the PE
factorsG(n) with the predictions of the scaling formula~9!,
where we usedC.1023 ~note thatC is small because the
decoupling used above is, of course, the upper estimate!. For
a very large spectral interval, there is good agreement
tween the developed scaling theory and numerical calc
tions. The PENS effect appears to be really huge, e.g.,
enhancement for the fifth harmonic generation
G(5)/(ka0)4;1021, for l51.5 mm. Note that the diffusive
scattering was observed in experiments on second-harm
generation from semicontinuous silver films@8#.

To summarize, large-field fluctuations in random met
dielectric composites near percolation result in t
percolation-enhanced nonlinear scattering~PENS!, which is
characterized by giant enhancement and a broad-angle d
bution.
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